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Faceting at the step flow threshold in epitaxial growth on patterned surfaces

Aleksy K. Jones, Anders Ballestad, Tian Li, Michael Whitwick, Jorg Rottler, and T. Tiedje*
Department of Physics and Astronomy, The University of British Columbia, 6224 Agricultural Road,
Vancouver, British Columbia, Canada V6T 1Z1
(Received 7 November 2008; revised manuscript received 7 March 2009; published 20 May 2009)

We identify a kinetic mechanism responsible for the emergence of low-angle facets in recent epitaxial
regrowth experiments on patterned surfaces. Kinetic Monte Carlo simulations of vicinal surfaces show that the
preferred slope of the facets matches the threshold slope for the transition between step flow and growth by
island nucleation. At this crossover slope, the surface step density is minimized and the adatom density is
maximized, respectively. A model is developed that predicts the temperature dependence of the crossover slope

and hence the facet slope.
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I. INTRODUCTION

A major challenge in the field of epitaxial growth is to
understand and control the relationship between macroscopic
surface shapes and underlying atomic processes that create
these shapes.1 Furthermore, in semiconductor device manu-
facturing, regrowth on patterned substrates is commonly
used as a means to control the lateral distribution of depos-
ited material in order to synthesize optical waveguides or
electron confinement structures.”* Since epitaxial growth
typically occurs far from equilibrium, kinetic effects can lead
to rich behavior in the surface shape evolution. For example,
in the case of metals, a flat surface is typically unstable
against the formation of pyramidal mounds with a character-
istic slope due to a tendency for adatoms (normally an iso-
lated surface atom with no lateral bonds) to diffuse uphill.’
An uphill diffusion bias can be caused by features of a dif-
fusing adatom’s energy landscape that tend to drive adatoms
to uphill step edges over time; a well-known example is the
Ehrlich-Schwoebel (ES) barrier AE, (Ref. 6) that adatoms
must surmount in traversing a step edge to a neighboring
terrace.

In the case of GaAs (001) epitaxy, patterned surfaces be-
come smoother during growth and there is a downhill rather
than uphill diffusion bias.”® Nevertheless, recent regrowth
experiments show slope selection and facet formation as the
surface smoothens. Ballestad et al.” demonstrate facet devel-
opment during molecular beam epitaxy (MBE) growth on
patterned surfaces at 580 °C. Examples of the facets are re-
produced in the cross-sectional atomic force microscope im-
ages of microfabricated one-dimensional (ID) gratings in
Fig. 1(a). Similar results using MBE have been observed by
Kan et al'® These features have also been reported by
Wixom et al.'' in GaAs grown at 620 °C by metal organic
chemical vapor deposition on patterned substrates. Note that
the surface facets discussed here are low-angle facets, which
form during growth on vicinal surfaces with surface orienta-
tions close to (001). This contrasts with earlier work on re-
growth on high-angle-patterned surfaces in which both (001)
and (111) crystallographic facets are exposed.'”> Here, we
present an explanation for the facets observed in these ex-
periments using kinetic Monte Carlo (kMC) simulations and
simple scaling arguments.
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II. RESULTS FROM EXPERIMENTS AND SIMULATIONS

The emergence of facets is readily reproduced in kMC
simulations of a solid on solid model. Adatoms are deposited
with a deposition rate F=1 ML/s onto a substrate consisting
of a square lattice and undergo thermally activated hops to
nearest-neighbor sites.!> The hopping frequency can be writ-
ten as w=w exp[—(E;+mE,+AE,)/kzT], where E; denotes
the energy barrier for the free diffusion of monomers, E, is
an additional binding energy for a monomer surrounded by
m nearest neighbors, and w,=2kzT/h~ 10" s7! is an at-
tempt frequency. The ES barrier AE, only contributes to the
hopping rate if the adatom is traversing a step edge. We
employ values for the energy barriers broadly suitable for
modeling MBE growth of GaAs: E ;=125 eV, E,
=0.35 eV, and AE,=-0.10 eV.? The negative sign for AE,
means that the ES barrier favors downhill migration of ada-
toms so that there is a net downhill current in the kMC
simulations.

Figure 1 presents results for regrowth on a prepatterned
surface from (a) experiment and (b) kMC simulation for di-
rect comparison. In the simulation, a grating profile has de-
veloped facets with a well-defined slope * ¢, near the grating
peak after deposition of 6000 monolayers. The facets grow in
size and become better defined as the simulation goes on,
and the general shape of the evolving facets is in agreement
with the experimental results. The slope 6, is weakly tem-
perature dependent and decreases with increasing tempera-
ture. Figure 2 shows results from another regrowth experi-
ment on the same substrate but in a different surface
orientation and under slightly different growth conditions.
Again a clear facet has become visible near the peak. These
experiments are strong evidence that the effect is robust and
not dependent on a specific set of growth parameters. The
difference in the shape of the experimental and simulated
surface shapes in Fig. 1 (simulated shapes are more square
than the experiments) is caused by the fact that the smooth-
ing rate of the simulated surface profile is lower than the
experimental value. The smoothing rate in the simulation
could be increased by adding an incorporation barrier that
inhibits the attachment of adatoms to step edge boundaries at
upper terraces. We also note that the valleys for both the
simulations and the experiments are V shaped in Fig. 1 but
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FIG. 1. (Color online) (a) Experimental atomic force microscope cross sections of 1D gratings on GaAs (001) with the [110] direction
in the plane of the page. The bottom line shows the initial microfabricated grating profile before any growth has taken place. The next line
is after deposition of 600 nm of GaAs at 580 °C. The straight line indicates the facet slope 6. (b) Grating profiles for kMC simulations on
a patterned surface at two different temperatures after deposition of 6000 monolayers on a surface with 2600 X 600 sites. Each point in the
2D profile is an average over the 600 surface sites in the third dimension. The inset shows the profile slope in the area surrounding the grating

peak at 560 (upper curve) and 600 °C (lower curve).

W shaped in Fig. 2. The physical origin of these features is
discussed in earlier publications.®!'* The small mounds in the
valleys in Fig. 2 can also be expected to develop kinetic
facets with the same characteristic slopes that are seen on the
ridge tops.

Much effort has gone into the theory behind epitaxial re-
growth on nonsingular surfaces. However, the models only
address the formation of high-symmetry crystal facets based
on their equilibrium interfacial properties.”>~!” The facets at
6 we refer to in this paper are of a different physical origin
and are better understood as vicinal regions of a particular
slope. In order to understand their physical origin, we per-
form a second set of kMC simulations on vicinal surfaces,
where the surface is not prepatterned but constrained to a
fixed slope 6. A useful parameter is the step density S, de-
fined as the total length of all the steps on the surface divided
by the area of the surface. S has dimensions of nm~! and as
long as the step edges are relatively smooth, S is approxi-
mately equal to the reciprocal of the step separation. For
sloping surfaces with straight step edges S== 6/a, where a is
the lattice constant, but for ramified steps, S will be greater
than this lower limit.

In Fig. 3(a) we calculate S from kMC simulations as a
function of vicinal angle 6 for several different temperatures
under steady-state growth conditions. As one would expect,
S rises linearly with 6 for large values of 6. However, for
T=450 °C there is a minimum in the step density at non-
zero slope 6, as reported earlier,'® and this minimum shifts
to smaller angles with increasing temperature. Figure 3(b)
shows the adatom density n as a function of surface slope.
We note that it has a maximum at slopes close to but slightly
smaller than 6, in the temperature range of 400-600 °C
studied here.

II1. DISCUSSION

It has long been appreciated that a vicinal surface grows
either in a step flow mode, in which all deposited adatoms
attach to existing step edges, or in a nucleation dominated
regime in which new steps are continuously being created by
nucleation of islands.! The transition from step flow to island
nucleation can be observed experimentally as the onset of
reflection high-energy electron diffraction oscillations.!® The
lower part of the inset of Fig. 3 shows a top view of the step
edges at the slope corresponding to the step density mini-
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FIG. 2. Experimental atomic force microscope cross sections of

1D gratings on GaAs (110) with the [110] direction in the plane of
the page after deposition of 200 nm of GaAs at 590 °C and a
deposition rate of 0.29 ML/s. Other experimental parameters are
similar to Ref. 9. The starting surface has a trapezoidal shape simi-
lar to that shown in Fig. 1(a).
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FIG. 3. (Color online) (a) Step density S and (b) adatom density
n on vicinal surfaces as a function of slope for 400, 450, 550, and
600 °C (O,V,¢,0). The inset shows one step edge pattern at
400 °C and two patterns at 600 °C at the slopes indicated by sym-
bols in the main figure.

mum at 600 °C. This picture suggests that the growth pro-
cess makes a transition from island nucleation to step flow
near the slope at which the step density is minimized. It
follows that at higher slopes the surface consists of a stair-
case of parallel steps while at lower slopes the step pattern
includes closed loops surrounding monolayer islands.

Steps in a parallel configuration capture adatoms more
efficiently than steps that form closed loops for the same step
density. In fact, a solution of the two-dimensional (2D) dif-
fusion equation®® for parallel steps and steps in the form of
square loops (all steps assumed to be perfectly absorbing) at
the same step length per unit area gives a steady-state mean
adatom density 1.7 times higher for the closed loops. Under
steady growth conditions, island nucleation establishes a step
density such that the adatom capture rate matches the flux of
incoming adatoms. The step density required to achieve this
balance will be higher with steps in the form of closed loops
(inefficient capture) and lower for steps in the form of par-
allel lines (efficient capture). At the onset of step flow
growth, the steps are in the form of parallel lines, which
explains why the step density is a minimum at this condition.

In addition, Fig. 3(b) shows that at the onset of step flow
growth, the mean adatom density is largest. This is because
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FIG. 4. (Color online) Schematic plot of facet development at
the step density minimum (see text). Shaded arrows represent ada-
tom diffusion away from areas of low S and the dashed arrows
represent the areas of lowest growth rate.

the adatom density has larger spatial variations when steps
are in the form of closed loops, which leads to increased
island nucleation, a higher step density, and in turn to a lower
adatom density. We have confirmed this interpretation nu-
merically using idealized step edges in the form of squares
and straight parallel lines.

The physical origin of the slope selection can be under-
stood with reference to growth on a convex surface, as
shown schematically in Fig. 4. The high adatom density in
the region with slope corresponding to 6, will lead to lat-
eral diffusion of adatoms to nearby areas where the adatom
density is lower and the step density is higher. The lateral
diffusion of adatoms away from the slope with minimum
step density means that neighboring regions will grow faster,
tending to expand the area with slope matching the minimum
in the step density. This process will create an extended re-
gion with slope equal to 6,,;,, or in other words, a facet.!®?!

In Fig. 5, we plot the facet slope 6, in the regrowth simu-
lation, along with the value of the step density minimum 6,;,
obtained from the simulations on vicinal surfaces as a func-
tion of temperature. Remarkably, 6; closely tracks 6, in the
temperature range of 550—625 °C. Also shown is the slope
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FIG. 5. (Color online) Temperature dependence of the facet
slope 6/(X) from the regrowth simulations [as shown in Fig. 1(b)],
the slope at the minimum in the step density 6, (O) as determined
from simulations on vicinal surfaces [Fig. 3(b)], and the experimen-
tal data point ¢, (M) from Fig. 1(a). Also shown are (- -) the recip-
rocal of the nucleation length at zero slope represented by aSy/2,
where S is the step density at zero slope (see text), and (—) the
threshold slope for step flow growth predicted from Eq. (2).
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of the experimental facet from Fig. 1(a), which coincides
with the simulated slope at the same temperature and depo-
sition rate. However, this good agreement must be regarded
as a coincidence because we have made no attempt to adjust
the parameters to fit the data. Since the growth parameters
are only weakly constrained by the single experimental data
point, even approximate agreement between the simulation
and experiment is sufficient to show that the proposed
mechanism is consistent with the experimental observations.
The accessible temperature range is constrained by faceting
behavior and by practical considerations: at lower tempera-
ture the facet slope becomes indistinct and at higher tempera-
ture we are limited by processor time.

Having established that the preferred slope 6, is con-
trolled by the step density minimum 6,,;,, we now construct
a model that explains the temperature dependence of 6,;,. In
order to quantitatively describe the transition between the
step flow and nucleation-dominated regimes, it is natural to
compare the typical spacing between vicinal steps [ to the
typical distance between nucleated islands; the latter quantity
is often referred to as the nucleation length /,."?*> For [,<1,
one expects step flow growth and for />, island nucle-
ation will take place. A simple estimate for the crossover
slope 6, is therefore

0min~a/ln' (1)

A first approximation to the nucleation length [, can be
obtained from S, the step density at zero slope. If the steps
are relatively smooth, the inverse of the step density is ap-
proximately equal to the step spacing.! Therefore, the nucle-
ation length can be approximated by 2/S,. The factor of two
comes about from the fact that if steps are evenly distributed
on a surface, the distance between the centers of neighboring
islands will be twice the separation of the step edges. The
temperature dependence of /, has been studied previously in
great detail.?>?* Here, we have deliberately chosen an esti-
mator for the nucleation length which is simple, experimen-
tally accessible, and consistent with that used in the litera-
ture.

In Fig. 5 we also plot the above estimate for the step
density minimum (dashed line). The slope estimated from
the nucleation length agrees quite well with 6, for higher
temperatures but starts to show deviations at lower tempera-
tures. Starting at high temperature, the slope at the minimum
step density first increases as the temperature decreases, then
drops rapidly to zero at a critical temperature. The initial
increase in slope is driven by the temperature dependence of
the nucleation length which becomes progressively smaller
at low temperatures. However, there is a limit to this mecha-
nism: once [, is smaller than the roughness of the step edges,
the distinction between the parallel steps of the step flow
regime and the closed-loop steps of the nucleation dominated
regime is lost, and the crossover vanishes. Below this tem-
perature 6, drops rapidly to zero, as shown in Fig. 5. The
shape of the step edges in the low-temperature regime where
the step edges are rough can be seen in the upper inset of Fig.
3.

A more refined interpretation of the step density minimum
is also possible. In this approach, we include the roughness
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of the step edges explicitly and calculate the nucleation
length on vicinal terraces directly. We introduce the nucle-
ation length on a vicinal surface [,,,, which is calculated with
separate kMC simulations in a geometry with two perfectly
absorbing parallel boundaries that represent the step edges.
1,,(T) is then taken as the separation between the boundaries
where stable islands first begin to appear. In order to capture
the effect of the deviation of the step edges from straight
lines, we calculate the root-mean-square displacement w
of a step edge around its mean position; w,,,; could be inter-
preted as an effective thickness of the step edges. The step
edges are therefore effectively closer together than estimated
by the average terrace spacing /,. The transition from island
nucleation to step flow growth occurs when the effective
terrace spacing is equal to /,, (Ref. 1) so the crossover cri-
terion would then read /,,=c/;—cow, e, Where ¢;=0.8 and
c,=2.2 are adjustable constants determined by fitting. Solv-
ing for /; and taking 6,;,=a/l;, we obtain
a

2)

emin = -
Cllnv + CoWims

This expression provides an excellent approximation of
the step density minimum, as shown in Fig. 5, where we plot
Eq. (2) as a function of 1000/T (solid line). Note that the
improved model also captures the curvature in the tempera-
ture dependence of the step density minimum at low tem-
peratures where the model based on the zero slope step den-
sity fails. The good agreement is a strong indication that our
interpretation captures all relevant physics of the step density
minimum.

The temperature dependence of the facet slope contains
information about island nucleation through its relationship
to the step density. According to nucleation theory,' the step
density is controlled by the formation of stable nuclei on the
surface and depends on growth rate F' and adatom diffusion
constant D according to S~ (F/D)¥?*4)_ where x is the size
of a critical nucleus. We can use this relation and the data in
Fig. 5 to estimate the size of the critical nucleus. The tem-
perature dependence of the step density on the high-
temperature end of Fig. 5 corresponds to an activation energy
of 0.42 eV. From this value and the known activation energy
for terrace diffusion (1.25 eV) we conclude that the critical
nucleus size is x=4.

Although we do not have experimental measurements of
the slope at the minimum step density, we can estimate the
zero slope step density S, from atomic force microscope im-
ages. According to the above argument, aS,/2 should be ap-
proximately equal to the facet slope. Indeed this turns out to
be the case. At a growth temperature of 590 °C, the step
density is found to be 0.079 nm~'.?3 Using a step height a
=0.27 nm, appropriate for GaAs (001) surfaces, we find
aSy,/2=0.6°. This value can be compared with the facet
slopes indicated by the straight lines in Figs. 1(a) and 2,
which have a slope of 1.7° and 1.1°. The slope of similar
facets in Ref. 10 was found to be about 1° for a sample
grown under comparable conditions (585 °C, 1 ML/s). In
addition, we note that the grating patterns in Figs. 1(a) and 2
are oriented orthogonally with respect to each other. In Fig.
1(a) the relevant surface step spacing is perpendicular to the
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slow surface diffusion direction on GaAs (100) ([110] direc-
tion) while in Fig. 2 the relevant step spacing is perpendicu-
lar to the fast-diffusion direction on GaAs (100). Higher sur-

face mobility in the [110] direction means that the atomic
step spacing should be larger in this direction; therefore we
can expect the kinetic facet slopes to be lower for the grating
in Fig. 2. Taking into account the surface anisotropy, the
uncertainties in the experimental values of the step densities,
and likely variations in the growth conditions, the observed
level of agreement between the model and the experiments
(0.6° compared with 1°, 1.7°, and 1.1°) is entirely reason-
able.

IV. CONCLUSION

In conclusion, we have discovered a mechanism for slope
selection in epitaxial crystal growth at the crossover between
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step flow and island nucleation. This kinetically defined
slope leads to a characteristic facet slope which has been
identified both in kinetic Monte Carlo simulations and in
several epitaxial regrowth experiments on patterned GaAs
substrates. However, the processes behind the slope selection
mechanism are completely general and do not depend on the
specifics of the GaAs system.
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